Shaping multi-agent systems with gradient reinforcement learning

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-Agent Systems by Incremental Gradient Reinforcement Learning

A new reinforcement learning (RL) methodology is proposed to design multi-agent systems. In the realistic setting of situated agents with local perception, the task of automatically building a coordinated system is of crucial importance. We use simple reactive agents which learn their own behavior in a decentralized way. To cope with the difficulties inherent to RL used in that framework, we ha...

متن کامل

Multi-agent Learning and the Reinforcement Gradient

The number of proposed reinforcement learning algorithms appears to be ever-growing. This article tackles the diversification by showing a persistent principle in several independent reinforcement learning algorithms that have been applied to multi-agent settings. While their learning structure may look very diverse, algorithms such as Gradient Ascent, Cross learning, variations of Q-learning a...

متن کامل

Abstract MDP Reward Shaping for Multi-Agent Reinforcement Learning

MDP Reward Shaping for Multi-Agent Reinforcement Learning Kyriakos Efthymiadis, Sam Devlin and Daniel Kudenko Department of Computer Science, The University of York, UK Abstract. Reward shaping has been shown to significantly improve an agent’s performance in reinforcement learning. As attention is shifting from tabula-rasa approaches to methods where some heuristic domain knowledge can be give...

متن کامل

Plan-based reward shaping for multi-agent reinforcement learning

Recent theoretical results have justified the use of potential-based reward shaping as a way to improve the performance of multi-agent reinforcement learning (MARL). However, the question remains of how to generate a useful potential function. Previous research demonstrated the use of STRIPS operator knowledge to automatically generate a potential function for single-agent reinforcement learnin...

متن کامل

Reinforcement Learning in Cooperative Multi–Agent Systems

Reinforcement Learning is used in cooperative multi–agent systems differently for various problems. We provide a review on learning algorithms used for repeated common–payoff games, and stochastic general– sum games. Then these learning algorithms is compared with another algorithm for the credit assignment problem that attempts to correctly assign agents the awards that they deserve.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Autonomous Agents and Multi-Agent Systems

سال: 2007

ISSN: 1387-2532,1573-7454

DOI: 10.1007/s10458-006-9010-5